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I. INTRODUCTION
The incomplete beta function Ix(a,b) is defined by
Ix(a,b) :G(a,b)ﬁ( 3-1(1—t)P-1dt,  a>0, b>0, 0<x<1 (1)
B(a,b)=1 /G(a,b):J; 13-1(1—t)b=1dt =I'(a) [(b)/T(a+b),  [10, p.36], (2)
where the gamma function I'(u) is given by

I‘(u):j' et LU=t g, u>0. (3)

0

Thus I,(a,b)=1. In addition, if 0<x<1 then Ix(0,b)=1 and Ix(a,0)=0.

The quantity 1—1Iy(a,b) is called the complement of Ix(a,b). Using u=1—t in (1) and (2)

yields
1—Ix(a,b) =Iy(b,a), y=1—-x. (4)
The function Ix occurs in many branches of science, including atomic physics, fluid dynamics,
transmission theory, lattice theory, and operations research. It is perhaps best known for its extensive
applications in statistics. In particular, the well-known central F-distribution P(Fglv,,v;) can be

obtained from Iy by the following substitutions :

a=v; /2, b=vy/2, t=v\F/[vy+vF], Fo= a(lbf-x)’ (5)
where
v v F vy— -\ 14
P(Fol vy, 02) =, 20,2 G(%%)I B A (6)
0
Q(Fol vy, vg)=1—=P(Folvy,v,)=1 _x(vy/2,v,/2). (M)

The incomplete beta function is also directly related to the Student’s t-distribution A(tq|v) and the

binomial distribution E(n,r,x), where

Pt <to) =Altol )= G(4,%) JZ"(HR/U)'(”“)/”« ()
=1-Ix(v/2,1/2), x=v/{v+t2],
E(n,r,x);i (i")xi(l—x)""i =Ix(r,n—r+1). (9)

I=r

Derivations of these well-known results are given in [4].




Procedures for computing 1y date back to Newton. A historica! survey outlining some of the
analytical and approximation methods used for evaluating lx is given by Dutka [7]. An extensive
literature search for a robust algorithm to compute Iy did not reveal a publication that would lead to a
subroutine acceptable for inclusion in a high quality main frame mathematics library such as the
NSWC Library of Mathematics Subroutines (NSWCLIB), (9]. The best procedure found was in a report
written by Amos and Daniel [2]. For a special case however, where a and b take positive integer and
half-integer values, an algorithm exists, with an associated Fortran subroutine ISUBX, which yields Iy

with 9-10 decimal-digit accuracy, [4, 5]. It is contained in NSWCLIB.

In this report an algorithm is given for computing Iy and 1— ly . A transportable Fortran
subroutine named BRATIO has been written which uses the algorithm. BRATIO is designed for use on
computers having k-digit single precision floating arithmetics where 6 <k<14. On the CDC 6000-7000
series computers, BRATIO yields results accurate up to 14 significant digits for both Iy and 1-—Iy.
BRATIO is available for general use in the NSWC mathematics subroutine library, [9].

A primary region of difficulty for computing Ix(a,b) and 1—Ix(a,b) has been when a and/or b
is large and x=a/(a+b). In this region [y changes rapidly from 0 to 1. A continued fraction, with new

weighting factors, and a new asymptotic expansion are used to treat this region satisfactorily.

Section II contains the basic equations and algorithms used for BRATIO. Section III describes
in a, b, x space the regions of use for these basic relations. An associated flowchart for BRATIO is
included. Section IV describes a number of specialized algorithms required in order to use the basic
relations effectively. Section V briefly summarizes the accuracy and efficiency of BRATIO, and section
VI contains a few examples using BRATIO. Appendices A, B, and C contain proofs for some results
which are used in BRATIO. A Fortran listing of BRATIO and its required subprograms is given in
Appendix D.




II. BASIC RELATIONS

Throughout we shall use

p=af(a+b)  q=1-p=b/(a+b). (10)
Also since Iy and 1 —Iy are to be computed to the greatest possible accuracy,
y=1-x (1)

is required as input in addition to a, b, and x. In BRATIO, relations (12)—(16) are used to compute

either Ix or its complement. Their domains of application are given in Section III.

BPSER

N (1—b)(2<b) --- (i—b) i
Iy (a,b)xG(a,b) X (1+a_)j(1 b)(; (:ij) § b)x') (12)
1=?

The series is obtained from (1) by replacing the second factor in the integrand with its binomial

expansion. Relation (12) is used only when x<0.7 and b<1, or bx<0.7.

Given a tolerance ¢>0, (12) is computed by the function BPSER(a,b,x,c), where

a N
Ix(a,b)zG(a,b)l‘a—(l+aE Wi ) (12.1)
n=l
Wn-_—_Cn/(a+n), Cn:Cn,l(l_“b/")x, C():l (12.2)

N =the smallest integer such that ajwy|<e.

BUP

N r bt .
_ —,ab (a+b+j—1) j-1
Ix(avb) ]x(a+ th)’“‘x y jg] [‘(b)r(a+j) 1
Given a tolerance ¢, (13) is computed by the function BUP(a,b,x,y,N,¢). BUP is used only
with BPSER or the next relation to be described, BGRAT. Relation (13) follows from

(N >1) (13)

Ix(a+l,b):[x(a,b)—xath(a,b)/a, which can be obtained by substituting

(a+b)P(1 -1 = a?~(1-nb-1— 43 (1_yP] (13.1)

X
[x(a+1,b)= aga"b) L t2(1 —a)b"dt.

Equation (13) can be rewritten in the form

a b N-I

X i b+i .
Ix(a,b)—Ix(a+ N‘})):S_B(—::,b—) iZdix', dm:i:li;di, do=1. (13.2)




If b<1 then for i>0, di+1sdi and the sequence hiEdixi is monotonically decreasing. Thus, the
computation of the sum Zhi can be terminated when a term hy=dyx™ is reached that satisfies

m
hm<ed h;,orm=N—1.
i=0

When b>1 then hizhiﬂ if and only ifxg(a+l+i)/(a+b+i)zri. Also we note that ri<rj when

i< j. Thus if k is the largest integer such that X2 then
hg<h, < ... <h >hy > ... >hy_,.
Therefore, if k is the largest integer for which k<(b—1)x/y —a, then the computation of the sum Zhi

m
can be terminated when a term hyy,, (m>k) is met that satisfies hyn <€) hi’ orm=N-—1.

i=o
BGRAT
L F(a+b)
Ix(a,b)=M ) ppJy(b.u), M:—F r, a>b (14)
=0 [(a)T
T=a+23l, u=-Tinx, r=eUu/T(b), Jo(bu)=Q(b,u)/r (14.1)
p Al i
pn=(b—1)en + m{: (mb—n) ¢m Pnom » Cm’:m v Po=l1 (14.2)
o0 -t b1 . .
Q(b,u):J _e—I‘(bT dt (incomplete gamma function) [1; p.260] (14.3)
u
(b+2n)(b+2n+1) u+b+2n+1 (Inx)*"
Insa(bu) = AT? In(b,u)+ T (_nz_x) (14.4)
o L
L=smallest integer such that lpL.]L|5 6( Y pndn +w0/M). (14.5)
n=o

Relation (14) is used only when a>15, b<1, and x>0.7. Given ¢, (14) is computed by the
subroutine BGRAT(a,b,x,y,w,¢,IERR) where w and IERR are variables. Given an initial value w, for
w, then BGRAT assigns w the value wy+Ix(a,b). IERR is an indicator which is set when underflow

forces the computation of (14) to end prematurely.

Equation (14) was derived by Wise [15]. Our derivation follows:

If t:e‘Y/ I‘| then

X b-1 00 _
I 21 (1-t)P1dt = 27—[ e Ysinh = (F) dy (14.6)
a u “

where T and u are defined above. Substituting




0 L Nh_ o iebo
sinhP~1z = 22! ( Y. cnz‘")b "= 5 p, 22J+b '
n=0 j:’\ J

into (14.6), where the ¢, and P; satisfy (14.2), yields (14) where

[(b+2
J,,(b,u):(ﬂﬁ _(rl%)l) Q(b+2n,u).

Then (14.4) follows from (14.8) and

b+2n+2,u) =Q(b+2 e~ y220 b+2n+1 1; 6.5.21
Q( +2n+ ,u)_Q( +-n,u)+m (U+ +2n+ ), [ ; 0.0. ]

where (14.9) is the result of two integrations by parts of its left hand side.

BFRAC
Xd)’b oy & %m = _a
SR ol DS

a,=1, Blzga—(AJrl), A=a—(a+b)x=(a+b)(p~x)

S (a+n—-1){a+b+n—1)
nel (a+2n—l)2

n(b—n)xz, n>1

By, =n4nBon)X, atn [A+1+n(1+y)], n>0

a+2n—1"a+2n+1
{An+1:Bn+1An+0n+1An—t Ay=0, Aj=ay
Bnii1=/f8na Bantan, Bn, By=1, B, =8,
Ap a; a, ap

m = the smallest integer such that

JAm/Bm—~Am-1/Bmol<elAm /Bl

(14.7)

(14.8)

(14.9)

(15.4)

(15.5)

Equation (15) is new and is used over a very large part of the domain: a>1, b>40, with x<p.

Given a tolerance ¢, (15) is computed by the function BFRAC(a,b,x,y,A,¢). The weighting factors c;,,

given below, which control overflow and underflow, appear to be new.

Relation (15) is obtained by considering the classical expansion




_ X did
Ix(a,b)_m(ﬁr—‘l—g---> (15.6)
n(b—n)

dn= Crm—narm "0 (15.7)

(a+n){a+b+n)

donn=— (g ey ¢ n20. (126.58], (3], 13 (153)

For large a where a>»b, we note that d,p~0 and dyp,,~—(l+b/a)x. Thus if

Ry, is the iterate

_1__dld

1+1

d[] 2

THdyoy

S

Ry=

+

then most of the change of values of these iterates occurs in every other iterate. Consequently, the

“ . ” . . ag a; . .
associated” continued fraction _hl s is considered where
a, =1, any1=—dyn_1dop
b;=1+d,, bpyr=14+don+done, 021 [14; p.20]

The iterates R, are the iterates for this expansion as already pointed out by Aroian in [3] ( with some

corrections given in [13] ). Hence
X a, a
Ix(ab)= =¥ ( B U I )

Now for large a where a>»b, it is clear that d,,~0 forces ap=0. However, for x=zp

we also find that d,,=0 forces bpx0. This can cause division of 0 by 0 when the iterates of this
continued fraction are computed, or it can cause division to overflow. Thus, this continued fraction is

also not considered appropriate for computational purposes.

In order to eliminate the problems arising from d,, =0, we rescale the coefficients a and by

with weighting factors ¢y such that

aj=cja;, oap=cy_;cpap (n22), Bp=cpby (n2>1),

where
cp=a+2(n~1), n>1. (15.9)
- & @ - A
T}:ICI"I the iterates of T+ Ot are the scaled iterates for b+ 0,4 and we
obtain

_ Xy (o @ \_ Xy (1 G
Ix(ab) = aB(a,b) (,13,+ Ba+ )~ B(a,b) (ﬁl+ a2+ )‘

which is relation (15). The expressions (15.4) and (15.5) for computing (15) follow from Theorem 2

: im An_ Mo @
(1; p.19], where r\nl-ronoom- 37 Bot




If n<b, then ap>0 and By is a positive value not near 0. To insure that the maximum
number of iterations satisfies n<b, (15) is applied only when b>40. In this case, x must also be a

sufficient distance from p when a > 100.

BASYM
Let v be an arbitrary positive scaling factor that is assigned below. Then
Ix(ab)~ U e-2’ nZliiodn In(z) (B7)",  x<p (16)
b2 b 5 [ab U:ﬁcﬁ 27(a+b)

a+b’ 9=atb

(t)=t—1—int, t>0 (16.1}

pt)=as(})+bo( L), o<i<

=J¢(X)
an=‘r_" Ay Y>>0 (16.2)
An= i,[(l p "+ (=1)" pq‘“], (Ao=1)

r
N (16.3)
n 1 K ()
bn _ran+" E[I‘(ll—-l _l]bi a, o n=h2.. [11)
(-n/2)
Cn—lllbnl ’ (n>1)
dy=1, dn:—z:d| Neiel (16.4)
i=0

'.—‘—l 9 (OC “

Julz) = 2° vZ'J e-viv Iy, (16.5)
7

#y=Jq/a, a<bh (16.6)

3 :,,p/) . a>bh.

N is defined as the smallest integer such that

N
lay In@ () gy In @ (N1 < <3 dn In2) (49)"




_’

Relation (16) is used only when a and b are large and x=p. It appears to he new. Given
A=(a+b)(p—x) and a tolerance ¢, (16) is computed by the function BASYM(a,b,x,y,A,c). The

expansion is obtained by writing (1) in the form

lx(a,b)z"i—qb jz (g)a (L;—‘)b dt 0<x<]1. (16.7)

From (16.1), ¢(t)>0 for t#p and

o(x) :—(a In¥+b 1ng) (16.8)

Thus if u:.ltp(t) fort<pandu = —,Icp(t) for t>p, then

oo 2
Ix(a,b)=U2 \E L e p—gz du, (16.9)

where z:,lnp(x) if x<p and z:-—.lga(x) if x>p. Hereafter, we shall assume that x<p. In order to use
(16.9), u/(p—t) wil! be replaced by its Maclaurin series in u.

From (16.8) and
t_ p—t\_ _ R (p=t\"
alnl-)—aln(l-—T,—)_—anz___:lﬁ( P )
1—t _ p—t -
bln—q—~_.bln(l+—q—

one obtains

w=p(t)=-Lo(p—1)’F An (p—t)",  Ip—ti<min{p,q},
23 n>o

where A, is given in (16.2). Thus if an-_-'y'n/\n for y>0, then 2(8yu)®=s?A, where
A=Y aps" and s=7(p-t). Hence, if P(s):sJT\ then <2 fyu=P(s). If v=P(s), since
nxo

P is analytic at 0 with P(0)=0, by the Lagrange-Biirmann expansion [8; p.58] the inverse

s=P~!(v) of P is given by

~ ~na.-N/2
cn:,l—lrcs(l’ n):,l—]rcs-m(s A / )y

where res(P~") is the residue of the series P~". Also for any r#0
A=Y ik,
k>0
8




where b;(r) is given in (16.3), [11]. Consequently,

1,(-1/2)
‘h =q bp_y

{_2.65‘—1_7 ::-;::1/2 Cnvn_lzz dnv",
n31 n3o

where dy, is given in (16.4), [11].

Now if h=a/b for a<b and h=b/a for a>b, let y=(1+h)/h, (see (16.6)). Then A= aps"
n>o
for |s|<1 and -

an=:Z5q[1+(=1"n"™"], a<h (16.10)

9
an =25p[(-1"+A"] asb.

It can be shown for a=b that the series v/s=Y_ dyv" has a radius of convergence no larger than 2.
n>o
Indeed, we have

u? =avi=—aln(l-s?),

and, with v complex, s=0 when v= 27 exp(ir/4).

If a<b then A=Y a,s" >0 for 0<s<1 since each ap >0. Hence v=syA is defined and real for
1130

0<s<l. Also, from (16.8) we note that v—occ when s—1, and dv/ds=(s/v)[(1—s)(14hs)]"' #0 for
0<s<1. Consequently, f(v):v/sz‘f,_\ can be regarded as a function of v for all v>0. Since it is also
true that the derivatives f(")(v) are bounded for v>0 (see Appendix C), let Mp :sup{lf(n)(v)l:vz()}

for n>1. Then M, <1 (see Appendix ('}, and for

n-1 i
vp(v)=f(v)=Y div .

i=0

[Un(v)[<M, v /n! (v>0) by the Taylor formula with remainder. Therefore, from Y28u/(p—t)=f(v)

and (16.9) we obtain

9 TELEL : .
Ix(ah) = U F ez [_): d. (81)').(2) +l-,n], 2>0

1=0
1y _1 712 x -—ll:’ 3 3
=50 ™ yyp(N24qu)dy,
where J,(z) is given by (16.5). Also

[Enl<Mp/m(8) " In(z)= Mn/n'..]n(z)[a(l+h)]_n/2 (16.11)




so that |Ep| =0 when a— oo for fixed h. Consequently, (16) is asymptotic for a<b. Also we note that
In@=2""D7 Tl(n+1)/2] Qla+1)/22%)]

where Q is defined by (14.3), and that J;{z) can be computed recursively by
Jo(2) =(NF/4)e% erfe(z),  J,=a”>

In(@)=2""(V22)"  +(n=1In_,(z),  n>2.

When a>b the situation is less satisfactory, since it has not yet been shown that (16) is

asymptotic. Nevertheless, the utility of (16) has been established for y <1.05q when b>100 by extensive
computer testing.

Finally, we observe that the defintion of U given in (16) is not suitable for computational
purposes. U can be accurately evaluated using

A(a) =In T(a)—(a—})In a+a~3ln (2r)

(16.12)
InU=A(a+b)—A(a)—A(b). |




III. DOMAINS FOR SUBPROGRAMS

In this section we specify the regions of application for the five subprograms discussed in the

previous section. A flowchart is given in Fig. 1.
In order to establish such regions the following conditions must be met:

(a) The applied algorithms must be efficient and yield

the desired accuracy over such regions.

(b) It is necessary that J<.9, where J has the value
Ix(a,b) or Iy(b,a). J is computed by the proper
choice, acccording to (a), of one or more of the
subprograms based on (12)—(16). The complement

is then obtained as 1—1J.

Even though analysis was carried out to predict the efficiency and achievable accuracy of the
basic relations over various domains, (a) was established with exhaustive testing by Morris using

double precision versions of the subprograms.

Since J is to be computed to the greatest possible accuracy, the relative tolerance to be satisfied
will be e=max{¢,,1075} where ¢, is the smallest number for which 14¢,>1 for the floating point
arithmetic being used. The restriction that ¢>107'°, thereby limiting the maximum precision to
14-15 significant digits, is made since many of the supporting subprograms are accurate to a

maximum of 14 digits (sce section 1V).

Arguments are presented near the end of this section showing that condition (b) is always

satisfied. For easy reference we have:

BPSER(a,b,x,¢) Relation(12)
BUP(a,b,x,y,N.¢) Relation(13)
BGRAT(a,b,x,y,w.15¢,IERR) Relation(14)
BFRAC(a,b,x,y.A,15¢) Relation(15)
BASYM(a,b,x,y,A,100¢)° Relation(16)

There are two main domains to consider, namely min(a,b)<t and min(a,b)>1. It should be
recalled that if a and b, and x and y are interchanged in one of the above subprograms, then the
subprogram, except for BUP, yields J=Iy(b.a)=1-Iy(a,b) with 1-J=Iy(a,b). BUP gives on the
interchange Iy(b,a)—1ly(b+N,a).




min(a,b)<1

If x>1/2, then a and b, and x and y are interchanged. For x<1/2, (17) is used for computing
J=Ix(a,b) and (18)—(20) are used for computing J =Iy(a,b). In (19) and (20), w, is the initial value

of w and J is the final value of w.

BPSER(a,b,x,¢) max(a,b)<1, a>min(0.2,b) (17)
max(a,b)<1, a<min(0.2,b), x®<0.9 (17.1)
max(a,b)>1, b<1 (17.2)
max(a,b)>1, b>1, x<0.1, (bx)?<0.7 (17.3)
BPSER(b,a,y,€) max(a,b)<1, a<min(0.2,b), x*>0.9, x>0.3 (18)
max{a,b)>1, b>1, x>0.3 (18.1)

BGRAT(b,a,y,x,w,15¢,IERR), w,=0
max(a,b)>1, b>15, 0.1<x<0.3 (19)
max(a,b)>1, b>15, x<0.1, (bx)2>0.7 (19.1)

BGRAT(b+N,a,y,x,w,15¢ JERR), wo=BUP(b,a,y,x,N,e), N=20

max(a,b)>1, b>1, 0.1<x<0.3, b<15 (20)

max(a,b)>1, b>1, x<0.1, (bx)*>0.7, b<15 (20.1)

max(a,b)<1, a<min(0.2,b), x®>0.9, x<0.3 (20.2)
min(a,b)>1

If x>p then a and b, and x and y are interchanged. For x<p, (21)—(26) are used for
computing J=Ix(a,b). In (22)—(24) N is the largest integer less than b and b=b—N. Also, in (23) and

(24) wy is the initial value of w and J is the final value of w.

BPSER(a,b,x,¢) b <40, bx<.7 (21)

BUP(b,a,y,x,N,¢) + BPSER(a,b,x,¢)
b<40, bx>.7, x<.7 (22)

BGRAT(a,b,x,y,w,15¢,IERR), w,=BUP(b,a,y,x,N,¢)
b <40, x>.7, a>15 (23)




_-

BGRAT(a+M,b,x,y,w,15¢,IERR), M=20
w,=BUP(b,a,y,x,N,e)+ BUP(a,b,x,y,M,¢)

b <40, x>.7, ax<15 (24)
BASYM(a,b,x,y,A,100¢) b>40, 100 <a<b, x>.97p (25)
b>40, 100<b<a, y<1.03q (25.1)
BFRAC(a,b,x,y,A,15¢) b>40, a<b, a<100 (26)
b>40, 100<a<b, x<.97p (26.1)
b>40, a>b, b<100 (26.2)
b>40, 100<b<a, y>1.03q (26.3)

These statements are summarized in the flowchart for BRATIO in Fig.1. Proofs are now given
which verify that J<0.9 is always satisfied (requirement b above). The arguments use the facts that
InT(t) is strictly convex for >0, [1; 6.4.10], and that Ix(a,b) is a decreasing function of a and an
increasing function of b. The latter result is proven in Appendix B. Since InT(t) is strictly convex for

t >0, we also note that 11)(t)=i InI'(t)}, [1; 6.3.1], is an increasing function of t.
dt

F_ox_'_(}_'/'_):aﬁl, b<l1, x<1/2, a>min(.2,b)
If a>0.2 then
I =I4(a,b)<Ix(a,1)=x?<(1/2)"* =0.8706.
If a>b then
J:]x(a,b)SIx(a,a)S]]/z(a,a).
Also Il/z(a,a)=0.5 from (4).
For (17.1): a<l, b<l, x<1/2, a<min(.2,b), x2<0.9
J=Ix(a,b)<lx(a,1)=x%<0.9
For (17.2): a>1, b<1, x<1/2
J=Ix(a,b)<Ix(1,1)=x<1/2
For (17.3): a<l, b>1, x<0.1, (bx)*<0.7

Integrating (1) by parts gives

X
lx(a.h)z(;(a,b){g(l*x)b—wb_;__lJ ta(l_t)b-zdt}
0

a X a
g(:(a.m{"T (1—x)P14bxl an (1-1)b-? d;}: G(ab)%-.
0
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Let
F(a,b)=T(a+b)/[T(b)b?}, 0<a<i, b>1.
Since 8/8a[lnFl=y(a+b)—Inb is an increasing function of a for a>0, InF is strictly convex and

hence F is strictly convex for a>0. Thus F(a,b)<1 for 0<a<1 since F(0,b)=F(1,b)=1. Hence
J=Ix(a,b)<(bx)?/T(a+1)<0.7/I'(1.46163--.) <0.791.

For (18): a<1, b<1, 0.3<x<0.5, a<min(.2,b), x*>0.9

From (1), with
(1-9®71>1,  0<t<x,

Iy (a.b)>H(a) ;%—bxaz H(a)(0.9)/2 >.45, (a<b),
where
H(a) =T(a+b+1)/[T(a+1)T(b+1)] (0<a<l).
The last inequality on Ix follows from the fact that H{a) is increasing and that H(0)=1. Hence

J =Iy(b,a)=1-Ix(a,b)<0.55.
For (18.1): a<1, b>1, 0.3<x<0.5

I=Iy(ba)<Iy(1,1)=1-x<0.7

For (19): a<l, b>15, 0.1<x<0.3

J =Iy(b,a)<ly(b,1)=y® =(1-x)® <(0.9)'5 ~0.2059

For (19.1): a<l, b>15, x<0.1, (bx)*>0.7
Then
I=ly(ba)< Iy(b,))=yP=(1—-x)P,
From(1), using (l—t)b'_lz(l—x)b—l and recalling F(a,b) in the proof of (17.3),

F(a,b) (1—x)P (bx)®
I'a) 1-x a

Ix(a,b) 2 > F(a,b)(bx)*J/T(a+1).

Now 8F/8b=g(a,b)F where g(a,b)=1(a+b)—1(b)~a/b. Since gaa <0 [1; 6.4.10}, g is strictly concave
for 0<a<1. Thus, since g(0,b)=g(1,b)=0 [1; 6.3.5], g(a,b)>0 for 0<a<1 and dF/3b>0. Hence, F is
increasing in b for 0<a<1 and

F(a,b)>F(a,1)=T(a+1).
Thus Ix(a,b)>0.7] for 0<a<1, which implies that J<1/1.72.59.

14




For (20): a<l, 1<:b<15, 0.1<x<0.3
I =ly(b,a) Iy (b,1) =y =(1-x)° <(0.9)° <0.9
For (20.1): a<l, 1<b<15, x<0.1, (bx)2>0.7
Proof is the same as that given for (19.1).
For (20.2): b<l, x<0.3, a<min(.2,b), x*>0.9

2 X
@b (@) =k@E [ B a-n*a,
where
K(a) =T (2a+1)/[[(a+1)T(a+1)], (0<a<l).
From (1), using
(1-ty*7'>1,  0<t<x,
it follows that

Ix(a,b)> K(a) x* / 2>0.45 K(a).

Since 9K(a)/da=2K(a)[¥(2a+1)—%(a+1)]>0, K(a) is an increasing function. Hence K(a)>1 and
J =1y(b,a)<0.55.

For (21)—(26): a>1, b>1
In this case it can be shown that if x<p then

I-1/e a<b

Ix(ab) < { (27)
1/2 a>b.

A proof of this result is given in Appendix A. Hence

{Ix(avb) XSP (28)

Iy(b,a) X>p.




Notation for the flowchart in Fig.1

12 Refers to (12) for computing Ix(a,b) (BPSER)
12 Refers to (12) for computing Iy(b,a)  (BPSER)
13 Refers to (13) for computing Ix(a,b) (BUP)

13 Refers to (13) for computing Iy(b,a)  (BUP)

14 Refers to (14) for computing Ix(a,b) (BGRAT)
14 Refers to (14) for computing Iy(b,a) (BGRAT)
15 Refers to (15) for computing Ix(a,b) (BFRAC)
15 Refers to (15) for computing Iy(b,a)  (BFRAC)
16 Refers to (16) for computing Ix(a,b) (BASYM)

16 Refers to (16) for computing Iy(b,a)  (BASYM)

p=a/(a+b), q=b/(a+b)

1.C.=> Interchange a and b; x and y.

[b]=largest integer < b.

A=a—(a+b)x, a<b; A=(a+b)y—b, a>b.

Numbers above some of the flowchart boxes refer to the labels in the Fortran listing of

BRATIO.
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IV. AUXILIARY FUNCTIONS

In order to compute Ix(a,b) and 1—Ix(a,b), procedures are needed for evaluating I'(a), InI'(a),

the error function erf x, exp(x?®)erfc x, the incomplete gamma function Q(a,x), (14.3), for a<1, and the

functions
eX—1 (29)
In(14x) (]x]<.375)
inT(1+x) (—0.2<a<1.25)
1/T(1+a)—1 (—0.5<a<1.h)

e *x? [T(a) (a>0, x>0)
¢(x)=x—1~Inx (x>0).

These functions are discussed in [6]. Also, procedures are needed for computing
A(a)=InT(a)~(a—.5)ln a4+a—.5 In(27) (a>8) (30)
ALGDIV(a,b)=In[[(b)/T(a+Db)], (a>0,b>8)

BCORR(a,b)=A(a)+A(b)— A(a+Db) (a,b>8)
BETALN(a,b)=In B(a,b) (a,b>0)
BRCOMP(a,b,x,y)=x*y? /B(a,b) (a,b>0, 0<x<1, y=1—x).

Rational minimax approximations are used for the functions given in (29). Experience indicates that
such approximations normally generate less error and can be considerably more efficient than the
standard expansions. However, minimax approximations have the disadvantage of being limited to a
fixed maximum precision. The mimimax approximations used are designed to achieve a maximum

precision of 14 significant digits.
If A(a) is needed only for a>20, then the sum

1/(12a)—1/(360a%)+ ---
in the asymptotic expansion of InT(a) [1;6.1.41] may be used. If a>15 then the minimax

approximation

A(a): i Cn/a2n+l
0

co= .83333 33333 33333E~01
C,=—.27777 77777 70481E—02
c,= .79365 06631 83693E—~03
c3=—.59515 63364 28591F 03

4= .82075 63703 53826F —03
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can be applied, and if 2a>8 the minimax approximation

5
Aa)= Y. dp/a®""!
n=o

dg= .83333 33333 33333E—-01 (32)
d=—.27777 77777 60991E —02
d,= .79365 06668 25390E —03
d3=-.59520 29313 51870E—03

d,= .83730 80340 31215E—03
ds=—.16532 29627 80713E—02

can be used. These approximations were obtained by Morris [9]. On the CDC 6000-7000 series

computers, they are accurate to within 1 unit of the 14‘? significant digit.
Expansions for ALGDIV(a,b) and BCORR(a,b) use (32). From the definition of A
ALGDIV(a,b)=w—(a+b~.5)In(1+a/b)~a(ln b—1) (33)
w=A(b)—A(a+b).
Let

p=a/(a+b), q=b/(a+b), Sm=I1+q+ -+q™" (m>1).
Then

S
1-q"M=(1-q)Sm =pSm, %nTm:bLm—(;-blb_)_rﬁ' (34)

Thus, from (32) we obtain

S

5
P 2n+1
W—En‘z_;,odn bg; y (35)

which completes the algorithm for ALGDIV(a,b). Also
BCORR(a,b) = A(ag) +[A(bg) — A(ag +by)]

ag=min{a,b}, bg=max{a,b},

where (32) and (35) are applied.
If a<b, then BETALN(a,b) can be accurately computed when a>1. If a>8 then
BETALN(a,b)=(.5In (27) —.51nb)+BCORR(a,b)—u—v

u:—(a—.."))ln[a/(a-f-b):], v=b In(1+a/b)




is applied. If 2<a<8 then a is reduced to the interval [1,2] by
B(a,b):ﬁ—g—_l—_—lB(a—l,b).
Consequently, it can be assumed that a<2 .
If b>8 then
InB(a,b)=InT(a)+ALGDIV(a,b)
is appliad. If 2<b<8 then b is also reduced to the interval {1,2] when a>1. Thus, we need only
consider the cases: 1<a<2, 1< b<2,or a<1 and b<8. If a>1 then

InB(a,b)=InT'(a)+InT(b)—InT'(a+b)
is appropriate. No loss of accuracy due to subtraction can occur since InT'(a), InT'(b), and —InT(a+b)
are nonpositive. However, subtraction does occur when a<1. It currently is not clear how loss of

accuracy due to subtraction can be avoided when a<1. Therefore, in this case BETALN is not used in

BRATIO.

If min{a,b} <8 then BRCOMP(a,b,x,y) can be computed directly from its definition.
Otherwise,

BRCOMP(a,b,x,y)= ﬁm e?
2=[a¢(1—)/a)+bg(1+A/b) |+ BCORR(a,b)

is used, where A is given in (15.1).
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V. CONCLUDING REMARKS

Formulas (12), (13), (14), (15), and (16) for Ix(a,b) are of the form +S, where S is a series. For
example, for (15) 7:xayb/B(a,b) and S is a continued fraction. On the CDC 6000—7000 series
computers, almost no error is generated in computing the series S over the domains specified in section
III. The series is normally accurate to within 1 or 2 units of the 14 th significant digit. However, the
precision of the factor 7 is restricted by the inherent error of Ix(a,b). Extensive testing on the CDC
6000 — 7000 series computers comparing the results obtained by BRATIO with results from double
precision code, indicates that the precisions of the values obtained for Ix(a,b) and 1—Iy(a,b) by
BRATIO approximate the inherent errors of these functions up to a maximum of 14 significant digits.
On any computer, accuracy is restricted to 14 digits because of the algorithms used for the auxiliary

functions in section IV.

On the CDC 6000—7000 secries computers, a maximum of 7 terms of the secries (14) for
BGRAT, and a maximum of 11 terms of (16) for BASYM were observed for the domains specified in
section III. Frequently, 40 or fewer terms of (12) for BPSER suffice, but a maximum of 92 terms has
been observed when a is small, b is large, and x = .3. Also, 40 or fewer terms generally suffice for the
continued fraction (15), BFRAC, but a maximum of 58 terms has been observed when a or b is

exceedingly large and x & a/(a+b).

In practice, BRATIO has been found to be a reliable and efficient subroutine. As was noted in
the previous sections, in order to develop such a subroutine new formulas were needed for 14(a,b), a
surprisingly elaborate specification of the domains of usage for the various formulas had to be given,
and a number of auxiliary functions had to be treated with extreme care. Thus, the development of
BRATIO for efficiently computing I¢(a.b) and 1 —1x(a.b) to high relative accuracy was not a simple

task.
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VI. NUMERICAL EXAMPLES

A collection of 16 examples using BRATIO is given in Fig.2. The results were obtained using
the CDC 6000-7000 series single precision trnncation floating arithmetic. As was noted in section III,
the function BUP is used only with BPSER or BGRAT and appears in (20), (22), (23), and (24). The
following three cases illustrate its use. The quantity ¢ below is set to approximately .710E-14 (see

p-11).

C_asiil). a=.10, b=14.5, x=.29, y=.7l
From (20) w, =BUP(14.5, .10, .71, .29, 20, ¢)
=I,,(14.5, .10) -1 7,(34.5, .10)
=.17776 09989 0838E-3.
Hence, if w is assigned the initial value wy then a call to BGRAT(34.5, .10, .71, .29, w, 15¢, IERR)
yields the value
w =wy+I1 7,(34.5, .10)=1 ;,(14.5, .10)
=.17785 31648 7898E-3.
Also
I.,4(.10, 14.5)=.99982 21468 3512.

M- a=1.5, b=20.5, x=.065, y=.935
(Note that bx>.70, A=a—(a+b)x=.07>0)
From(22) wo =BUP(.50, 1.5, .935, .065, 20, )
=1 035(:50, 1.5)—1I 435(20.5, 1.5)
=.56745 07805 9439.
Then
[ o65(1.5, 20.5)=w,+BPSER(L.5, .50, .065)
=wy+.71754 32115 7741E-3
=.57462 62127 1016,
[ a35(20.5, 1.5)=.42537 37872 8984.

Case (3). a=10.5, b=15, x=.80, y=.20, (A>0).
From (24) W, =BUP(.50, 10.5, .20, .80, I, ¢)
=1 50(.50, 10.5) =1 ,0(1.5, 10.5)
=.15518 20005 6352,
wo =W, +BUP(10.5, .50, .80, .20, 20, ¢)
=W, +1 40(10.5, .50)—1_5o(30.5, .50)
=W, +.32149 19363 8971E- 1
=.18733 11942 0245.




Hence, if w is assigned the initial value w, then a call to BGRAT(30.5, .50, .80, .20, w, 15¢ ,IERR)

yields the value

or

w =wo+1 g0(30.5, .50)

1 0(10.5, 1.5)=.18756 94122 3880.

Also,
I 00(1.5, 10.5)=.81243 05877 6120.
a b X y Ix(a,b) 1—-Ix(a,b)

.1 .8 40 .60  .88776 70523 5302E+00 .11223 29476 4698E-+00

.1 .8 .60 40 .92957 83432 6833E+00 .70421 65673 1668E -01

.1 2.3 40 .60 .97448 97683 7361E4+00 .25510 23162 6386E -01

1 2.3 .60 .40 99196 58486 2884E+00 .80341 51371 1598E -02

5.0 40.0 .99 .01  .10000 00000 0000E +01 .13053 04681 1410E-74

5.0 10.0 .99 .01  .10000 00000 000CE +01 .96509 74271 4997E ~17

10.0 38.0 02 .98  .26944 43561 3309 E-07 .99999 99730 5556 E+00

70.0 10.0 .85 .15 .23472 44941 6827E+00 .76527 55058 3173E+00

« 700 50.0 .99 .01 .10000 00000 0O0OE +01 .54279 07073 1686E -66

« 70.0 50.0 10 .90 47438 77486 2163E -38 .10000 00000 0000E +01

« 750 50.0 .10 .90 .61550 21193 1591E -42 .10000 00000 0000E +01

+ 500.0 501.0 .50 .40 .99999 99999 3299E+00 67009 77013 4757E-10

500.0 501.0 40 .60  .10148 03038 4399E -09 99999 99998 9852E+00

1000.0 1001.0 .49 5l .19153 11043 9543E+00 .80846 88956 0457E+00

1001.0  1000.0 49 .51 17957 42144 6754E+00 .82042 57855 3246E+00

(a=5.0E+20, b=59E+43,  x=1.0, y=1.0E-17
Ix(ab)=.49811 93659 6617, 1y(b,a)=.50188 06340 3383)

Due to inherent error. the 4 starred examples are correct to within 1 unit of the 12th

significant digit. All other cases are correct to within 5 units of the 14th significant digit.

Fig. 2 16 Examples of BRATIO
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APPENDIX A

BOUNDS ON Iy(a,b) WHEN x=a/(a+b), MIN{a,b}>1




BOUNDS ON Iy (a,b) WHEN x=a/(a+b), MIN{a,b}>1

The purpose of this appendix is to show that
1/2 <Ip(ab) <1—e! if1<a<b

(A-1)
1/e<Ip(a,b) <1/2 if1<b<a

where p=a/(a+b) and q=1—p=b/(a+b). Since I ;(a,a)=.5 from (4), we shall assume that a#b.

Lemma (A-1): If A(h)=(1 +]/h)'h for h > 0 then X is a decreasing function. Also, A+1 when
h—+ 0 and A—+1/e when h— 0.

The lemma is given for reference. It is a well known result.
Corollary (A-1): If a>1 then 1/e <Ip(a,1) <1/2.

Proof: From (1) we obtain Ip(a,l)=p3=(1+1/a)'a. Then from the lemma the corollary

follows.
Corollary (A-2): If b> 1 then 1/2 <Ip(1,b) <1-1/e.
Proof: Immediate from (4) and coroliary (A-1).

Since the above corollaries hold, in order to verify (A-1) it suffices to assume that a, b>1. The

following reasoning is due to James C. Perry (NSWC). Let

1
B= ota‘l(l—t)b“‘dt (A-2)
P
Bp=| t2-1(1~t)P-1d¢ (A-3)
fo=[ta-17 _\b-1
Bp=| 27! (1-4)°dt, (A-4)

If x=(1—t)>/? then

1 1+a/b\a_
Bp=£ J \ (x—x"**")2-1dx (A-5)
= A 1+a/b\a~
sz%)JO (x—-x +a/ )a ldx (A-6)
where b b
A=q P =(1+a/b) " (A-T)
Also 1/e < A <1 by lemma (A-1), and we now consider the functions
f(x)=x—x"**"® and F(x)=f(x)>"" (A-8)
for 0 <x<I.
A-1




From (A-7) and (A-8) we note that

{(0) =F(0)=0, f(1)=F(1)=0,

f(x) and F(x) have a unique maximum at x=2, and

f'(x) and F/(x) are positive (negative) for 0 <x <X (A <x < 1).
For any x, such that A <x, <1 let

X2—/\
/\-—Xl

(x,) = (A-9)

where x, is the unique value in [0,A) where f(x,)=f(x,) [see Fig. 3].

We now examine r(x,).

f(x)

- - - - I A

- - -
- s - -~
- - - -

X A X, 1
Fig. 3 Graph of f(x)

Lemma (A-2): If g(x) is twice continuously differentiable on [0,d], g(0)=g'(0)=0, and g'' is

increasing (decreasing) on (0,d], then h is continuous and increasing (decreasing) on {0,d] where

{ g(x)/x* (x>0)
h(x) =

g''(0)/2 (x=0).

Proof: Assume that g'' is increasing on (0,d]. Since h'(x)=(xg' —2g)/x® for x>0, let

k(x)=xg' ~2g for x >0. If x>0 then there exists 0 < £ <x such that g/ (x)=g"'(€)x by the Mean-
value theorem, so that
K'(x) =xg"(x) ~g'(x) =x(g" (x) —g"(§)] > 0.
Therefore, k(x) is increasing for x > 0. Since k(0)=0, h!(x)=k(x)/x® >0, which proves that h is
increasing on (0,d]. Also, since g(0)=g'(0)=0, h(x)—=g''(0)/2 when x—=0 by L’Hopital’s rule. If g''(x)
is decreasing on (0,d] then apply the lemma to —g.
Theorem (A-1): Let r(x) denote the function defined by (A-9). If a <b (a>b) then r(x) is

increasing {decreasing) for A <x < 1. Also, r—+1 when x— X,
Proof: If ¢(h)=f(A)—f(A+h) for 0<h<I—A then @(0)=0, ¢'(0)=—f'(A)=0, and

qS"(h)-:(a/bq)(,\-’;-h)_lm/b for h>0. Ilence, if a<b (a>b) then ¢’/ is decreasing (increasing), so that
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#(h)=¢(h)/h? is decreasing (increasing) by lemma (A-2). Also, #(h)—¢''(0)/2=2a/(2b)) when h—0

by the lemma and z\:qb/a.

Similarly, if ¥(h)=f(A\)—f(A—h) for 0<h<X then %(h)=1(h)/h? is increasing (decreasing)
when a<b (a>b), and %(h)-''(0)/2=a/(2b)) when h-0.

Now if A <x <1 and x; < A where f(x;)=f(x), then

rz_(x—/\)zzf(’\)_"f(xl) (x=2)* _9(A-x,)
T\ —xg (A—x,)? fA)=1(x) " g(x—A)

:—jg—g%—;:l when x— . If a <b then when x increases, A—x, increases, ¥(A—x,) increases,

#(x—X) decreases, and hence r

so that r’—

? increases. Similarly, t? decreases when a>b. Consequently, since r>0

the theorem follows.
Theorem (A-2): If 1 <a<b then Ip(a,b) <1-1/e.
Proof: Since a<b, r(x)<r(1)=(1—-X)/A for A<x<1 by theorem (A-1). Also, since

Ip(1,b) < 1—1/e by corollary (A-2), we shall assume that a > 1. Now let

t=r25 (1-x) A<x<1 (A-10)

so that 0 <t < A. For x> A let x; < A where f(x;)=f(x). Then t < A, and from

r(x):/-i-‘_‘_‘—):\1 < 1;’\ we have x; < t. Therefore,

F(l—l—fL\t)-—F(x):F(xl)SF(t)
so that
1 A
—a —al-A _1=2
Bp_bj Fdx=2 L= JO P(1-152 ¢ )at

I‘AJ;\ F(t)dt= (}\—l)ﬁp <{e—1)Bp

from (A-5) and (A-6). Therefore, from (A-2)—(A-4), Bp < (e—l)_ﬁp =(e—1)(B—Bp) so that
Ip(a,b)=Bp/B<1-1/e.
Theorem (A-3): If 1 <b <a then Ip(a,b) <1/2.
Proof: Since a>b, r(x) <1 for A <x <1 by theorem (A-1). Also, since Ip(a,1) < 1/2 by
corollary (A-1}, we shall assume that b > 1. Now let
t=2\—x A<x< 1. (A-11)
Since bja <1, .5 < A <1 from (A-7) and lemma (A-1). Therefore, 0 <2A—-1< A and 22A—-1<t < A,




For x> X let x; <A where f(x,)=1(x). Then t< A}, and from r(x):i‘_;\ <1 we have x; <t.
-X
Therefore,

F(2A—t)=F(x)=F(x;) < F(t)
so that

1 A
B =§J F dx:éj F(2A—t)dt
P=b), (x) b)ya, ( )
<2 J'\ F(t)dt<§JAF(t)dt=_}§p
b Joa—, ~bl,

from (A-5) and (A-6). Therefore, from (A-2)—(A-4) Bp < §p= B—By, so that Ip(a,b)=Bp/B <1/2.
Theorem (A-4): If a,b>1 then
1/2<Ip(ab)<1—-1/e  whena<b

1/e<Ip(a,b) < 1/2 when a > b.

Proof: Immediate from (4) and theorems (A-2) and (A-3).
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MONOTONIC PROPERTIES OF Ix(a,b)

The purpose of this appendix is to show that Iy(a,b) is a decreasing function of a and an

increasing function of b.

Theorem B: If a>0, b>0, and 0<x<1, then ‘?IXT(:’~b—)50.
Proof: Let
f(t;a,b) =131 (1~ 1)1,
hereafter simply denoted by f(t). We have
Ix(a,b) = By(a,b)/B(a,b)

X
Bxab)=[ -0t ez [lea-gP

Then
B(a,b) xua'l(l—u)b“lInudu—B (a,b) ]ta_‘(l—t)b'llntdt
dlx(a,b) 7, X '

da B(a,b) B(a,b)

0

X
I:B(a,b):]2 le—a(——w :r I:J L"”"‘l(l—t)b‘l ua”l(l—u)b‘1 (Inu=In t.)du:|dt
a 0
X (X 1 (X
:J J [f(t)f(u)(ln n—Int) du]dt.-}-j J [f(t)f(u)(lnu—ln t)du:]dt.
0lo xJo
But the first double integral on the right is zero. Indeed, with

'1<u’tEIZ J: [f(O(u) (nu—lut)du]dt,

where the subscripts are used to indicate the order of integration (u then t), we have, by renaming the
variables,

Iu,t,: rt,u‘

Interchanging the order of integration then gives
I‘u,t,—': Feu==Tuw

which implies that T | =0. Therefore,

; L[
[B(a,b)]z ﬂxa_(:l’_) :Jx JO f(t) f(u) (Inu—int)dudt, (B-1)
which is negative since Inu—Int<0 for u<t. Thus,

le(a,l))
da

<O foralla>0, b>0, 0<x<I.
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Remarks. A more direct proof of (B-1) can be obtained by differentiating 1/[1+Iy(b,a)/Ix(a,b)]. Also,

since Inu—Int<u—t<0 for 0<u<t<1, from (B-1) we obtain the slightly stronger inequality
0lx(a,b) 1[x 2
25 <, [f(t)f(u) (u—t)du]dt/[B(a,b)]

__B(a,b) By(a+1,b) __B(a+ 1,b) Bx(a,b)
~ [B@b)] [B(a,b)]?

:a—_?_—l)[lx(a+l,b)—lx(a,b)].
Corollary: If a,<a, then Ix(a,,b)<Ix(a,;,b).
Corollary: If b, <b, then Ix(a,b;)<Ix(a,b;).
Proof: Since Iy(b,a) decreases as b increases, Ix(a,b)=1~Iy(b,a) increases as b increases.

We close by noting that precisely the same technique used in Theorem B establishes a

corresponding result for the incomplete gamma function. If

X
P(a,x) =r(g—)J0e‘°ta"dt, a>0, x>0,

then é-il—)‘;g%’x——)SO, and hence if a, <a,then P(a,,x)<P(a;x).
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UNIFORM ASYMPTOTIC BEHAVIOR OF (16)

The purpose of this appendix is to show that (16) has uniform asymptotic behavior for a<b
and a(1+a/b) = co. The proof will depend on showing that the n'* derivative of the function f(v)=v/s
(v>0) has a bound not depending on h=a/b when a<b and n is odd.

Theorem (C-1): If a<b then 0< f/(v)<1 for v>0 .

Proof:  Since §¢ ds =¥(1—s)(1+hs) and f=¥ we have
2
) =fi=8-% £=1-Y (1-s)(1+hs). (C-1)
Also
v? n
% (l—s)(1+hs)=l—§ Ap s (C-2)
n>1

Al’l 1+hn+1 h+hn

ia:(n+l)(n+2)+n(n+l)>0 n even {C-3)
Ap _ 1—p"! h—h"
2 =)@+ a@mrn S0 "ol

Therefore f/(v)=3 Ap s""!>0 is an increasing function for s>0 (and hence for v>0). From (C-2)
n31

1= Ap s">0 for 0<s<1, so that 3 Ap<l. Consequently, f'(v)= ZAn s'7'< T Ap<I for
n31 nsi n3i
v2>0.

Theorem (C-2): If a<b then f'(v) -+ 1 when v - co.

Proof: From (C-3) IE:lAn/Qq):(l+h)r§21/[n(n+l)], where

Z /n(n+ D)= Y [1/n =1/(n+1)]= L.

n>1

From (16.7) we have

v —1+h[—|n(l—s)—%ln (1+hs)]. (C-4)

Consequently, we now consider v as a function defined for 0 <h<1 and 0<s<1.

Lemma (C-1): If n=0,1,2,... then v" (1—s) can be extended to a continuous

function ¢y (h,s) for 0<h<1 and 0<s<1. Also, ¢y(h,1)=0 for 6<h<1.

Proof: From (C-4) we obtain
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-9 =g +h),, 2( )als) sg(ns)™¥
a ()=[~In (1=s)]¥ (1-5)* 0<s<1
‘ g(z)=—In (1+2)/2 0<z<l.

By L’Hopital’s rule g(z)— —1 when z~0. Hence, if g(z)=g(z) for 0<2<1 and g(0)=—1, then g(z) is

continuous for 0<z<1. Also if w=— In {1 —s) then

k

l’im lak(s):!‘[im WV exp(-2w)=0.

Thus, if &y (s)= ak ) for 0<s<1 and ak(l)_O then
1/2

én(hs) = [:1+h il Z: ( )O‘k(s) [Sg(hs)]n-kjl

is a continuous extension of vP{1—s) for 0<h<1 and 0<s<]1. Also, ¢p(h.1)=0 since each &k(l):O.

Theorem (C-3): If n>2 then f(n)(v) can be extended to a function that is continuous for

0<h<1 and 0<s<1. Also, f"™(v) =0 when v - co.

Proof: Given a fixed value 0<h<1. Then for any polynomial P in s (and h), k=0,1,2,... ,
and m=1,2,... ,

k k-1 k+1
& [3(1—s)Pl=k Y7 (1-s) P—m Sz (1-5)*(1+hs) P

Vk+1 vk+1 ) ,
- (1—8)(1+hs)P+Sm+1 (1-s)*(1+hs)P

where P’ is the derivative dP/ds. By induction (starting with C-1) it follows for n>2 that f(n)(v) is a
finite sum of terms of the form (vk/sm)(l——s) P. Consequently, by Lemma (C-1) f(n)(v) has a con-

tinuous extension ¥y (h,s) for 0<h<1 and 0<s<1. Also, ¥(h,1)=0 so that £™M(v) = 0 when vocc.
n n

Remark. For n>2, since f(v)=} dk VK in a neighborhood of 0 and f(m(v) — 0 when v—oc, by
k>0

(n)

Theorem (C-3) f '(v) is bounded for v>0. However, the bound may depend on h.

We now prove that a bound exists not depending on h when n is odd.

Definition: Given a series Y ayp(h)s" where cach ap(h) is continuous for 0<h<I.
n>o

Let Mp=max{ |ap(h)|: 0<h<1}. Then the scriecs Yaps" is said to satisfy condition (¢) when

Y Mps  converges for |s|<1.
n>o
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